Организация линейного тракта. Линейный тракт системы передачи ИКМ-15 строится на основе кабелей КСПП-1Х4ХО,9 или КСПП-1Х4Х1,2 с использованием оборудования БОЛТ-1024 и ПС-1024.
Блок окончания линейного тракта БОЛТ-1024 является станционным окончанием линейного тракта ИКМ-15 и предназначен для восстановления амплитуды, формы и временных соотношений однополярных элементов линейного сигнала, поступающих с частотой 1024 кГц и "затянутых" на тактовый интервал для организации дистанционного питания линейных регенераторов и служебной связи по искусственной цепи и защиты оборудования оконечной станции от опасных влияний. Данный блок рассчитан для работы на регенерационном участке затуханием 24 ... 42 дБ на полутактовой частоте 512 кГц.
Устройство дистанционного питания обеспечивает питание от одного до семи линейных регенераторов током Iд.п = 85+10-15 мА. Служебная связь может быть обеспечена на расстоянии до 50 км. Электропитание БОЛТ осуществляется от станционных источников постоянного тока с номинальным напряжением -60 В с заземленным плюсом.
Промежуточная станция ПС-1024 предназначена для восстановления формы и временных соотношений цифрового линейного сигнала в пределах регенерационного участка. Допустимое затухание регенерационного участка 24... 42 дБ. Напряжение питания одного регенератора ПС — 9,0 В ± 5 %.
Блок БОЛТ-1024. Функциональная схема БОЛТ-1024 представ¬лена на рис. 5. Блок окончания линейного тракта комплектуется в двух вариантах: для обслуживаемой и необслуживаемой ОС. Оба варианта содержат ячейки ВКУ, оконечного регенеративного транслятора ОРТ, местного питания МП, приемника тонального вызова ПТВ. На обслуживаемой оконечной станции в состав БОЛТ входит ячейка дистанционного питания ДП, на необслуживаемой — ячейка дистанционного шлейфа ДШ.
Рис. 5. Структурная схема БОЛТ-1024
Ввод линейного кабеля в БОЛТ осуществляется через ячейку вводно-кабельных устройств ВКУ. Ячейка ВКУ обеспечивает: согласование входных сопротивлений аппаратуры и кабельной цепи, создание искусственной цепи, защиту аппаратуры, разделение цепей служебной связи и дистанционного питания, дополнение затухания регенерационного участка, прилегающего к оконечной станции, до номинальной величины. Функции ВКУ выполняются следующими устройствами: линейными дифференциальными трансформаторами, устройствами защиты УЗ (разрядники и полупроводниковые диоды), фильтром служебной связи Ф, предотвращающим попадание пульсаций ДП на вход переговорного устройства, двух искусственных линий ИЛ-3 на 3 км.
В тракте передачи сигнал от БУК, пройдя ВКУ, поступает в линию. На приеме основной сигнал с линии через ВКУ поступает в ячейку оконечного регенеративного транслятора ОРТ, где происходит восстановление формы, амплитуды и временных соотношений линейного сигнала. Затем последний подается в приемную часть блока БУК. Схемы ОРТ и линейного регенератора отличаются только отсутствием в первом элементе защиты и стабилизатора напряжения ДП и будут рассмотрены ниже. Кроме того, ОРТ имеет схему сигнализации наличия линейного сигнала, представляющую собой амплитудный детектор, подключенный к контрольному выходу. На лицевой панели располагается светодиод "Сигнал", свечение которого свидетельствует о наличии линейного сигнала.
Односторонняя служебная связь по линейному тракту осуществляется на низкой частоте по искусственной цепи. Переговорное устройство ПУФ, расположенное в блоке СО, подключается к искусственной цепи через ячейку ПТВ. В исходном состоянии ПТВ подключен для приема сигнала тонального вызова. Подключение ПУФ осуществляется нажатием кнопки на ПТВ.
Ячейки ОРТ и ПТВ питаются напряжением +9 В от преобразователей местного питания. Ячейка МП снабжена местной сигнализацией, светодиоды "Авария — ОРТ" и "Авария — ПТВ" светятся при пропадании или недопустимом изменении местного питания. Тумблер на лицевой панели ячейки МП обеспечивает включение питания БОЛТ. В гнездах "9В — ОРТ", "9В — ПТВ" можно измерить питающее напряжение.
Дистанционное питание осуществляется от обслуживаемой оконечной станции по искусственной цепи согласно схеме "провод — провод". Лицевая панель ячейки ДП содержит: миллиамперметр для измерения тока дистанционного питания, тумблер для включения ДП, переключатель "1 — ПС" ... "3 — 7 ПС" для выбора пределов напряжения ДП, светодиод "Авария" для индикации аварийного состояния цепи ДП, потенциометр "Ток ДП" для подстройки тока ДП, дужку "±ДП" для подключения ДП к искусственной цепи, образованной в ВКУ.
На необслуживаемой оконечной станции вместо блока ДП устанавливается блок ДШ, образующий шлейф по току дистанционного питания. Кроме того, при изменении полярности тока ДП соответствующее число раз ДШ передает в БУК сигнал, формирующий шлейфы линейного и группового трактов. Подтверждение образования шлейфа осуществляется посылкой тонального сигнала частотой 512 Гц от генератора тонального вызова ГТВ, расположенного в блоке ДШ.
На лицевой панели ячейки ВКУ располагаются дужки "Линия — Прд" и "Линия Прм", подключающие ВКУ к парам кабеля, дужки и гнезда — "Работа — Прд", "Шлейф", "Работа — Прм" для образования шлейфа по линейному сигналу и организации измерений линейного тракта.
В целом блок БОЛТ представляет собой законченную конструкцию, крепящуюся болтами к каркасу оконечной станции. Линейный кабель распаивается непосредственно на гнезда бокса, примыкающего к ячейке ВКУ. На боковой стенке каркаса БОЛТ укреплен 30-контактный разъем, на который выведены цепи питания, сигнализации, входы и выходы трактов передачи и приема.
Промежуточная станция ПС. Основное назначение ПС — регенерация сигнала, приходящего со смежного регенерационного участка. Структурная схема ПС представлена на рис. 6. Линейный сигнал с предшествующего регенерационного участка поступает на входной кабельный бокс ЛБ, укомплектованный для соединения линейных и станционных гнезд бокса дужками. С гнезд можно производить проверку аппаратуры ПС и измерение параметров кабеля.
Рис. 6. Структурная схема ПС-1024
Пройдя через гнезда и дужки ЛБ, сигнал поступает в регенератор, называемый в системе ИКМ-15 усилителем линейным регенерационным УЛР, где осуществляется восстановление формы и временных соотношений сигнала. Регенерированный сигнал через гнезда и дужки ЛБ поступает на следующий регенерационный участок.
Блок служебной связи БСС обеспечивает подключение к искусственной цепи кабеля переговорного устройства участковой служебной связи, необходимой во время пусконаладочных и ремонтно-профилактических работ на линейном тракте. Кроме того, в БСС можно установить шлейф ДП, закоротив точки 1 и 2.
Блок телеконтроля БТК предназначен для организации шлейфа линейного тракта. При этом выход УЛР1 через искусственную линию LR соединяется с входом УЛР2 и сигнал из тракта направления А—Б возвращается на обслуживаемую ОС по тракту направления Б—А. Образование шлейфа происходит при подаче соответствующей команды с оконечной станции. Эта команда выдается переплюсовкой ДП, что вызывает и замыкание контактов блока БТК. Цепь управления этими контактами на схеме не показана. После первого переключения и возврата в исходное состояние организуется шлейф в первом от ОС НРП, после второго переключения — во втором НРП и т. д. Это дает возможность методом наращивания проверить работу линейного тракта с целью выявления неисправного УЛР. Одновременно со шлейфом для линейного сигнала организуется шлейф и по дистанционному питанию.
Основным элементом ПС является УЛР, структурная схема которого приведена на рис. 7. Цифровой сигнал с выхода оконечной станции или предшествующей ПС (рис. 8,а), преодолев регенерационный участок в искаженном и ослабленном виде, поступает на вход УЛР (рис. 8,6).
Пройдя устройство ввода линейного сигнала и защиты УВЗ, содержащее входной линейный трансформатор и элементы защиты схемы УЛР от опасных перенапряжений, линейный сигнал поступает на вычитающее устройство УВ, формирующее трехуровневый квазитроичный сигнал из двухуровневого (рис. 8,в). Необходимость в преобразовании такого рода вызвана следующими соображениями.
Система передачи ИКМ-15 предназначена для работы по кабелям КСПП, экран которых практически не создает экранирующего эффекта в области низких частот, из-за чего линейный сигнал в большой степени подвержен влиянию низкочастотных помех, вызываемых работой различных электроустановок, грозовыми разрядами, энергия которых сосредоточена в низкочастотной области спектра.
С другой стороны, энергетический спектр однополярного двухуровневого сигнала с элементами, "затянутыми" на тактовый интервал, содержит постоянную и НЧ составляющие с высоким уровнем, затрудняющие его регенерацию, так как при этом требуется усложнить схему усилителя-корректора регенератора. Усложнение связано с необходимостью восстановления постоянной составляющей сигнала и коррекции характеристики усилителя в низкочастотной области, при этом усилитель-корректор должен иметь относительно широкую амплитудно-частотную характеристику, что приводит к росту уровня помех на входе решающего устройства регенератора и снижению помехозащищенности ПС.
Рис. 7. Структурная схема усилителя линейного регенеративного УЛР
Преобразование двоичного сигнала в квазитроичный, энергия которого концентрируется в основном в сравнительно узкой полосе частот относительно частоты fт/2, позволяет подавить НЧ и ВЧ помехи, резко снижая их суммарный уровень на входе решающего устройства, упростить схему усилителя-корректора. Для преобразования двоичного сигнала в квазитроичный используется принцип, предложенный В. М. Штейном. Вычитающее устройство, содержащее линии задержки, задерживает поступающий сигнал на время одного тактового интервала и вычитает задержанный сигнал из исходного линейного сигнала.
Рис. 8. Временные диаграммы тракта регенерации УЛР
Преобразованный сигнал поступает на регулируемый корректирующий усилитель РКУ. Включение УВ в значительной степени снижает влияние НЧ искажений на линейный сигнал, тогда как ВЧ искажения, обусловленные ростом затухания кабеля с увеличением частоты и ограничением полосы передаваемых частот четырехполюсниками линейного тракта, остаются. Усилитель РКУ обеспечивает усиление с частичной компенсацией амплитудно-частотных искажений кабеля в области высоких частот (рис. 8,г). Для автоматической регулировки усиления на входе РКУ включен переменный частотно-зависимый корректор ПК, затухание которого изменяется под действием устройства АРУ. В УЛР применена электрическая система АРУ, позволяющая изменять усиление РКУ в пределах ΔSPK = ± 9 дБ от номинального значения коэффициента усиления SPK = 36 дБ.
Управляющее устройство АРУ содержит детектор Дет и усилитель постоянного тока УПТ. Часть сигнала с выхода РКУ ответвляется на Дет, выпрямленный ток усиливается УПТ и подается в диодную цепочку, входящую в состав ПК. Изменение уровня сигнала на выходе РКУ приводит к соответствующему изменению выходного тока УПТ, что, в свою очередь, приводит к соответствующему изменению затухания ПК и изменению усилении РКУ.
Применение АРУ позволило обеспечить высокую стабильность сигнала на выходе РКУ и отказаться от схемы автоматической регулировки порога решающего устройства УР. Откорректированным сигнал с выхода РКУ через трансформатор Тр поступает на двухполупериодный выпрямитель В1 Последний формирует последовательность импульсов, появление которых соответствует моментам изменения уровня входного сигнала регенератора (рис. 8, д).
На решающее устройство, представляющее собой пороговую схему совпадения, поступают импульсы с В1 и стробирующие импульсы от дифференцирующей цепи ДЦ (рис. 8, е) схемы тактовой синхронизации. В случае превышения сигналом с выпрямителя и порога стробирования УР на его выходе в моменты, соответствующие моментам стробирования, появляются короткие импульсы, поступающие далее на вход формирующего устройства ФУ (рис. 8, ж), предназначенного для регенерации сигнала. Формирующее устройство представляет собой триггер со счетным входом (Т-триггер), изменяющий свое состояние при поступлении импульса со стороны УР (рис. 8, з).
Формируемые триггером импульсы подаются на выходной усилитель ВУ, работающий в ключевом режиме, функцией которого является формирование импульсов линейного сигнала с заданными параметрами. Нагрузкой ВУ служит выходной линейный трансформатор ТрВ, снабженный элементами защиты.
Рис. 9. Временные диаграммы системы тактовой синхронизации УЛР
Схема тактовой синхронизации УЛР, обеспечивающая стробирование линейного сигнала, содержит в качестве входного элемента выпрямитель В2, куда поступает сигнал с выхода РКУ (рис. 9, а).
Как известно, двоичный сигнал с символами, "затянутыми" на тактовый интервал, и квазитроичный сигнал не содержат в своих спектрах тактовой частоты, необходимой для синхронизации УЛР. Тактовую частоту содержит двоичный сигнал, имеющий защитные промежутки между импульсами на тактовом интервале. Такой сигнал может быть сформирован выпрямлением с ограничением по минимуму сигнала с выхода РКУ (рис. 9, б), что и осуществляется выпрямителем В2 (см. рис. 7). С выхода сформированный импульсный сигнал проходит через эмиттерный повторитель ЭП, обладающий достаточно низким выходным сопротивлением, что исключает влияние входных каскадов на добротность контура выделителя тактовой частоты.
Далее импульсная последовательность поступает на фильтр, имеющий контур, настроенный на тактовую частоту. В контуре возникают колебания с тактовой частотой, амплитуда которых зависит от числа следующих подряд импульсов. Это колебание поступает на усилитель-ограничитель УО, обеспечивающий ограничение амплитуды тактовой частоты, за счет чего уменьшаются фазовые сдвиги стробирующих импульсов и возрастает помехоустойчивость УЛР. Далее тактовая частота поступает на формирователь, состоящий из усилителя мощности УМ, работающего в ключевом режиме и формирующего из сигнала УО последовательность прямоугольных импульсов со скважностью q = 2 (меандр), и дифференцирующей цепи, осуществляющей дифференцированные сигналы УМ и выделение отрицательных импульсов. Временные диаграммы сигналов на выходе контура, усилителя-ограничителя и дифференцирующей цепи соответственно показаны на рис. 9, в, г и д.
Промежуточная станция располагается в корпусе, представляющем собой стальной цилиндр, снабженный оголовьем с крышкой. В состав ПС входят линейные боксы и линейные регенерационные усилители УЛР-15. Каркас усилителя с монтажом крепится на крышке, снабженной контактами для подключения шлейфа и контрольными гнездами. Кроме того, на крышке размещаются контактные лепестки, позволяющие дублировать пайкой все разъемные соединения, а также клеммы и выходы схемы УЛР, контакты для подключения питания и сервисного оборудования.